Solid modeling (or modelling) is a consistent set of principles for mathematical and computer modeling of three-dimensional solids. Solid modeling is distinguished from related areas of geometric modeling and computer graphics by its emphasis on physical fidelity.[1] Together, the principles of geometric and solid modeling form the foundation of computer-aided design and in general support the creation, exchange, visualization, animation, interrogation, and annotation of digital models of physical objects.
Contents |
The use of solid modeling techniques allows for the automation of several difficult engineering calculations that are carried out as a part of the design process. Simulation, planning, and verification of processes such as machining and assembly were one of the main catalysts for the development of solid modeling. More recently, the range of supported manufacturing applications has been greatly expanded to include sheet metal manufacturing, injection molding, welding, pipe routing etc. Beyond traditional manufacturing, solid modeling techniques serve as the foundation for rapid prototyping, digital data archival and reverse engineering by reconstructing solids from sampled points on physical objects, mechanical analysis using finite elements, motion planning and NC path verification, kinematic and dynamic analysis of mechanisms, and so on. A central problem in all these applications is the ability to effectively represent and manipulate three-dimensional geometry in a fashion that is consistent with the physical behavior of real artifacts. Solid modeling research and development has effectively addressed many of these issues, and continues to be a central focus of computer-aided engineering.
The notion of solid modeling as practiced today relies on the specific need for informational completeness in mechanical geometric modeling systems, in the sense that any computer model should support all geometric queries that may be asked of its corresponding physical object. The requirement implicitly recognizes the possibility of several computer representations of the same physical object as long as any two such representations are consistent. It is impossible to computationally verify informational completeness of a representation unless the notion of a physical object is defined in terms of computable mathematical properties and independent of any particular representation. Such reasoning led to the development of the modeling paradigm that has shaped the field of solid modeling as we know it today.[2]
All manufactured components have finite size and well behaved boundaries, so initially the focus was on mathematically modeling rigid parts made of homogeneous isotropic material that could be added or removed. These postulated properties can be translated into properties of subsets of three-dimensional Euclidean space. The two common approaches to define solidity rely on point-set topology and algebraic topology respectively. Both models specify how solids can be built from simple pieces or cells.
According to the continuum point-set model of solidity, all the points of any X ⊂ ℝ3 can be classified according to their neighborhoods with respect to X as interior, exterior, or boundary points. Assuming ℝ3 is endowed with the typical Euclidean metric, a neighborhood of a point p ∈X takes the form of an open ball. For X to be considered solid, every neighborhood of any p ∈X must be consistently three dimensional; points with lower dimensional neighborhoods indicate a lack of solidity. Dimensional homogeneity of neighborhoods is guaranteed for the class of closed regular sets, defined as sets equal to the closure of their interior. Any X ⊂ ℝ3 can be turned into a closed regular set or regularized by taking the closure of its interior, and thus the modeling space of solids is mathematically defined to be the space of closed regular subsets of ℝ3 (by the Heine-Borel theorem it is implied that all solids are compact sets). In addition, solids are required to be closed under the Boolean operations of set union, intersection, and difference (to guarantee solidity after material addition and removal). Applying the standard Boolean operations to closed regular sets may not produce a closed regular set, but this problem can be solved by regularizing the result of applying the standard Boolean operations.[3] The regularized set operations are denoted ∪∗, ∩∗, and −∗.
The combinatorial characterization of a set X ⊂ ℝ3 as a solid involves representing X as an orientable cell complex so that the cells provide finite spatial addresses for points in an otherwise innumerable continuum.[1] The class of semi-analytic bounded subsets of Euclidean space is closed under Boolean operations (standard and regularized) and exhibits the additional property that every semi-analytic set can be stratified into a collection of disjoint cells of dimensions 0,1,2,3. A triangulation of a semi-analytic set into a collection of points, line segments, triangular faces, and tetrahedral elements is an example of a stratification that is commonly used. The combinatorial model of solidity is then summarized by saying that in addition to being semi-analytic bounded subsets, solids are three-dimensional topological polyhedra, specifically three-dimensional orientable manifolds with boundary.[4] In particular this implies the Euler characteristic of the combinatorial boundary[5] of the polyhedron is 2. The combinatorial manifold model of solidity also guarantees the boundary of a solid separates space into exactly two components as a consequence of the Jordan-Brouwer theorem, thus eliminating sets with non-manifold neighborhoods that are deemed impossible to manufacture.
The point-set and combinatorial models of solids are entirely consistent with each other, can be used interchangeably, relying on continuum or combinatorial properties as needed, and can be extended to n dimensions. The key property that facilitates this consistency is that the class of closed regular subsets of ℝn coincides precisely with homogeneously n-dimensional topological polyhedra. Therefore every n-dimensional solid may be unambiguously represented by its boundary and the boundary has the combinatorial structure of an n−1-dimensional polyhedron having homogeneously n−1-dimensional neighborhoods.
Based on assumed mathematical properties, any scheme of representing solids is a method for capturing information about the class of semi-analytic subsets of Euclidean space. This means all representations are different ways of organizing the same geometric and topological data in the form of a data structure. All representation schemes are organized in terms of a finite number of operations on a set of primitives. Therefore the modeling space of any particular representation is finite, and any single representation scheme may not completely suffice to represent all types of solids. For example, solids defined via combinations of regularized boolean operations cannot necessarily be represented as the sweep of a primitive moving according to a space trajectory, except in very simple cases. This forces modern geometric modeling systems to maintain several representation schemes of solids and also facilitate efficient conversion between representation schemes.
Below is a list of common techniques used to create or represent solid models.[4] Modern modeling software may use a combination of these schemes to represent a solid.
The historical development of solid modelers has to be seen in context of the whole history of CAD, the key milestones being the development of the research system BUILD followed by its commercial spin-off Romulus which went on to influence the development of Parasolid, ACIS and Solid Modeling Solutions. Other contributions came from Mäntylä, with his GWB and from the GPM project which contributed, among other things, hybrid modeling techniques at the beginning of the 1980s.
Solid modelers have become commonplace in engineering departments in the last ten years due to faster computers and competitive software pricing. Solid modeling software creates a virtual 3D representation of components for machine design and analysis.[8] A typical graphical user interface includes programmable macros, keyboard shortcuts and dynamic model manipulation. The ability to dynamically re-orient the model, in real-time shaded 3-D, is emphasized and helps the designer maintain a mental 3-D image.
A solid part model generally consists of a group of features, added one at a time, until the model is complete. Engineering solid models are built mostly with sketcher-based features; 2-D sketches that are swept along a path to become 3-D. These may be cuts, or extrusions for example.
Design work on components is usually done within the context of the whole product using assembly modeling methods. An assembly model incorporates references to individual part models that comprise the product.[9]
Another type of modeling technique is 'surfacing' (Freeform surface modeling). Here, surfaces are defined, trimmed and merged, and filled to make solid. The surfaces are usually defined with datum curves in space and a variety of complex commands. Surfacing is more difficult, but better applicable to some manufacturing techniques, like injection molding. Solid models for injection molded parts usually have both surfacing and sketcher based features.
Engineering drawings are created semi-automatically and reference the solid models.
The learning curve for these software packages is steep, but a fluent machine designer who can master these software packages is highly productive.
The modeling of solids is only the minimum requirement of a CAD system’s capabilities.
Parametric modeling uses parameters to define a model (dimensions, for example). The parameter may be modified later, and the model will update to reflect the modification. Typically, there is a relationship between parts, assemblies, and drawings. A part consists of multiple features, and an assembly consists of multiple parts. Drawings can be made from either parts or assemblies.
Example: A shaft is created by extruding a circle 100 mm. A hub is assembled to the end of the shaft. Later, the shaft is modified to be 200 mm long (click on the shaft, select the length dimension, modify to 200). When the model is updated the shaft will be 200 mm long, the hub will relocate to the end of the shaft to which it was assembled, and the engineering drawings and mass properties will reflect all changes automatically.
Examples of parameters are: dimensions used to create model features, material density, formulas to describe swept features, imported data (that describe a reference surface, for example).
Related to parameters, but slightly different are Constraints. Constraints are relationships between entities that make up a particular shape. For a window, the sides might be defined as being parallel, and of the same length.
Parametric modeling is obvious and intuitive. But for the first three decades of CAD this was not the case. Modification meant re-draw, or add a new cut or protrusion on top of old ones. Dimensions on engineering drawings were created, instead of shown.
Parametric modeling is very powerful, but requires more skill in model creation. A complicated model for an injection molded part may have a thousand features, and modifying an early feature may cause later features to fail. Skillfully created parametric models are easier to maintain and modify.
Parametric modeling also lends itself to data re-use. A whole family of capscrews can be contained in one model, for example.
Animation of computer generated characters is, technically, an example of parametric modeling, though few in the industry would consider it to be. Characters' skin is modeled with NURBS patches and stitched together or polygon modeled. The skin of characters is then parametrically associated to a skeleton within characters (with many characters' skins now being driven by muscle simulation systems). The skeleton of a character is rotated into poses, which parametrically drives the shape of the characters' skin for each frame to create animation.
Modern computed axial tomography and magnetic resonance imaging scanners can be used to create solid models of internal body features, so-called volume rendering. Optical 3D scanners can be used to create point clouds or polygon mesh models of external body features.
Uses of medical solid modeling;
If the use goes beyond visualization of the scan data, processes like image segmentation and image-based meshing will be necessary to generate an accurate and realistic geometrical description of the scan data.
Because CAD programs running on computers “understand” the true geometry comprising complex shapes, many attributes of for a 3‑D solid, such as its center of gravity, volume, and mass, can be quickly calculated. For instance, the cube shown at the top of this article measures 8.4 mm from flat to flat. Despite its many radii and the shallow pyramid on each of its six faces, its properties are readily calculated for the designer, as shown in in the screenshot at right.